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!ILE O F IN .I.LIG ENT R -ACrIVE PE FSSING
IN PRODUIOJN MANAGEMENT'

by

Mark S. Fox and Stephen F. Smith
The Robotics Institnte, Carnegie-Mellon University

USA

ABSTRACT

Our work has been concerned with the construction of intelligent systems
for production management and control. This paper focuses on the reactive
capabilities that such systems must possess to be of practical use in dynamic
environments. These capabilities include monitoring events on the factory
floor, idemif~ ing deviations from predicted production schedules, and
intelligent schedule repair.

Introduction

Manufacturing in a job shop environment is composed of activities that can and must be managed at different
levds of abstraction. A shop floor can be viewed as a group of work areas; a work area is composed of
rnanufacturing cells: and a manufacturing cell is composed of individual machines. robots, and tools. There are
two distinct aspects to production management in such environments. The first concerns an ability to effectively
picdic shop bebavior through ihe generation of production plans. Appropriate operations must be selected, ani1
resources must be assigned and scheduled a. eaci level of abstraction. Job shop scheduling is a complex activity
that is influenced by knowledge accumulated from many different sources in the plant, and automation of this
function requires an effective strategy for utilizing this knowledge in the development of schedules. However,
an ability to generate realistic production schedules only addresses half of the problem of production
management. There is a second aspect that concerns an ability to react to changing circumstances. The shop
floor is a dynamic environment %here unexpected events continually occur and quickly force changes to
planned activities. Hence. the automation of decision making for production management must invelve not only
the prediction of shop beha'icr through planning, but also the ongoing alteration of plans in reaction to
unexpected events.

In this paper we focus on the reactive capabilities that a production management system must possess to be of
practical use in a dynamic job shop environment. We explore the major issues involved, considering, in turn

e the monitoring of events on the factory floor.
e the identification of deviations from predicted production plans,
e the alteration or repair of invalidated production plans, and

"Thii research was supported, in pan, by the Air Force OfMice of Scientific Research under contract F49620-32-K0017.
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e the improvement of subsequent predictions through aal..ysis of detected deviations.

As is the case with the predictive planning function, we argue that intelligent reactive processing is a knowledge
intensive activity and suggest a kno" ledgc-hascd approach to providing such a capability. To provide a
fr.rmework- for the discussion, we begin b) outlining our approach to the representation and generation of
production plans.

2. Representation a Generation of Production Eb

Analysis of the job shop scheduling domain has indicated that the crux of the scheduling problem is the
determination and satisfaction of a laqge variety of constraits. Schedules aic inflncnced by such diverse and
conflicting factors as due date requirements. cost restrictions, production levels, m.'chine capabilities and
substitutability. alternative production processes, order characteristics, rcsouiLe requirements, and resource
availability. In adopting a knowledge-based approach to job shop scheduling, we have sought to explicit)
represent all relevant scheduling knowledge as constraints in the system's kriowk :dge base, and to cast schedule
constriction as a constraint-directed heuristic search that is driven by this knowledge. The result is a general
methodology for scheduling that allows the incorporation of all constraints deemed relevant by the user. Our
work with the ISIS job shop scheduling system [1, 2,4] has demonstrated the %iability of this approach.

In representing a given constraint, it is necessary to capture the full range of information about the constraint
that is necessary in constructing satisfactory schedules. Since constraints are ofte., conflicting in nature, a central
representational concern is that of rela.%aion. Accordingly. the specification of allowable alternatives, expressed
either in he form of predicates or choice sets, is a prominent feature of the constraint representation. The
i:%sociation of a ulil" with each relaxatiun specified in a constraint pro% ides a means of designating preferences
amongst the alternatives available, intuitikely indicating the degree to which the constraint is satisfied if the
associated relaxation is chosen. Other salient features of the constraint representation include the importance of
satisf)ing the constraint, the constiaint's rclevance to the scheduling decisions that have to be made, and the
constraint's merdcpcndcncics with other constraints.

The packaging of all rele'ant scheduling knowledge as constraints in the knowledge base enables the use of a
fairly general search procedure as a means of generating production schedules. Within this consircint-directed
reasoning approach, constraints are used both to bound the generation of possible solutions and to focus
selection amongst the alternati~es generated. For example, the "next-operation" of a given operation is viewed
is a pr.-cedtnce constraint and the due date for an order as a goal constraint. Constraints of the former variety
can be used to elaborate the solution space of partial schedules during the search while the latter is used to rate
schedules in that space. Constraint know led~ge is also used to detect and diagnose poor solutions produced by the
search. The utilities assigned by the constraints in rating the solution provide a basis for detecting poorly
satisfied constraints, and the interdependencies amongst constraints provide guidance in identifying the cause of
the problem (e.g. a poo, decision with respect to a related constraint). The production schedules that are
generated serve as additional constraints for any subsequent scheduling that must be performed. The reader is
referred to [4] for a more detailed discussion of const-aint-directed reasoning.

Much of the constraint knowledge utilized in the generation of production schedules is also relevant in the
context of reactive processing, and. as such, it is felt that a constraint-based paradigm offers a fruitful approach
to providing this functionality The remainder of this paper explores the types of constraint knowledge required
to support intelligent reactive piocessing.
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. Monitoring

An ability to monitor ongoing work on the shop floor and detect tine',pected events is fundamental to a
reactive capability. We can identify two distinct levels of monitoring tha! arc required. each with distinguishable
characteristics and outcomes.

The first level at which monitoring must take place is at the proccss IcvJ. Here, the monitoring is concerned
with detecting problems in low level manufacturing processes (e.g. a machine malfunction), and is driven by
sensors and other automatic information gathering devices. Data is sampled continuously in real time, and the
monitoring process must be robust in the frace of spurious re.1dings and sensor malfunctions.2 Upon detection of

a problem at this leiel, the course of action to take is t pically clear cut (e.g. shut the machine dewn and call the
operator). H4owever. once the action is taken, an inconsistenc) is introduiced between predicted and actual shop
behavior. I hus, the actions taken at this level constitute unexpected events that mst be detected and reacted to
at a higher level (see below).

The second level at which monitoring must take place, and the level with which we are most concerned in this
paper, is the production acli'iy level. Sampling at this level is event-based, and is driven by manual inpUt from
various system interfaces as well as messages received from lower level control processes. Input can range from
simple status updates such as an inlication that a particular operation has completed or that a particular machine
has gone down to more far reaching events such as a change in production goals. The task here is to monitor the
incoming updates to the shop model and and detect situations where the actual shop beha% ior deviates from
s% stem predictions. If we adopt a constraint-based %iew. this amounts to a comparison between the predicted
consiraints in the model (e.g. the resource reservations contained in the production schedule) and the constraints
whlich have resulted from plant operation. In some cases, the comparison is simply a test for conflicts (e.g. a
machine down time constraint might conflict with the machine reservations of orders), while in other cases the
comparison might entail an evaluation of the predicted constraints with respect to the ne ly imposed constraints
(e.g. if a change in a production goal occurs, and an order's schedule is judged to satisfy this constraint very
poorly, then rescheduling might be warranted).ln either case, the constraint-based perspectve offers a direct
approach to the identification of deviations.

While the detection of deviant behavior appears to be rather straightforward, determination of the effects of
the deviatioi, and consequently the appropriate repair action to take, can be quite difficult. For example, the
repair action required for a machine malfunction might be localized to a particular work area (e.g. simply
rerouting affected orders through alternative machines), while a change in production goals may require a
complete rescheduling of the plant There might also exist alternative repairs with respect to a given deviation.
In this case additional knowledge, such as the uigency of the repair, estimates of the computational effort
associated with carrying out each alternative, and the system's belief in the certainty of alternative repairs must
enter into the decision as to how to proceed.

One approach to determining the effect of change focuses on goal-directed rule-based processing [5]. For each
category of error (or, in our terms, each type of constraint that may result from the detection of an unexpected
ei em), an appropriate repair procedure to follow is specified. Such an approach is appropriate in situations
there knowledge of the effect of events is fairly complete. However, as is the case with all rule-bascd systems,

2Scc 13) for a more detailed discusior of these issues and wi approach in dealing with them.
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problems lying outsidc of the scope of the rolL set ma> not be acted upon rropcrly. Nonethelss, such an
approach can prc-ide a useful franeork foi reacting to well nderslood deviations, with the syistcm falling
back on more general reasoning strategics % her. the ruie set does not apply.

Knowledge of constraint interdpendencies. %%hich define the extent to uhich the selection of values for
individual constraints effect (or constrain) .h;: selection of values for other constraints, can provide the basis for a
more general appfoach to schedule rep.ir. Consider the case %here the poor satisfaction of the due date
constraints associated Nih schedulcd orders is dciected. Clearly. the ability to satisfy the due date constraint is
dependent on the number of shifts that various %%ork areas in the shop are operating, and the appropriate repair
action, in this case. may be to increase the number of shifts. More generally, a constraint may have
intcrdependcricies with several other constraints, suggesting alcrnative directions along which the repair action
might proceed. In such cases, knoA ledge of the sensitivity of the individual interdependencies involved, as well
as the level of abstraction at which the rclatud constraints reside (as defined by their positions in the overall
network of interdependencies) can provide a means for determining which direction to take. Once a specific
constraint has been identified as the cause of the deviation, repair action can be effected in different ways. A
specific action might be inherited via the constraint taxonomy that structures the various constraint types known
to the system, providing the capabilities of the rule-based approach discussed above. Alternatively, the
interdependency network may be associated with levels in a hierarchical system, in which case there is a direct
mapping between the constraint causing the de% iation and the particular level of processing required.

A goal of any effort to repair predicted plans that have become invalidated is that of minimizing the extent of
the change. Shop stability is an imporiant concern and ve would like the revised schedule to deviate as little as
possible from previous schedules. To'kard this end. the 1SIS scheduling system illustrates the ad~antages of a
constraint-directed reasoning approach in its approach to rescheduling an order that has had resource
reservations bumped. ISIS transforms the ordefs reservations into preference constraints that focus the
rescheduling effort toward prior solutions if theN remain feasible. Only if the prior solution is now infeasible will
the reservatic is be discarded.

5. Learning: tib transition from teaction Q prediction

A larger issue than that of intel!igenth reacting to une\pected events concerns providing the s>stem with an
ability to improve its predictions on the basis of the exents it has encountered in the past. Recurring deviations
may be s mptomatic of an inaccurate or incomplete model of the specific job shop environment, and the s.sterm
should take steps to rectif\ the misconception. For example, ir a given machine is continuously breaking down.
this knov.Ied .e shou'd be taken into account during the planning process.

The processes invohed involved transforming reactive experience into knowledge that can be applied to
improve the system's predictive ability ma) not be that unlike those that have been described above, except that
the) are operating at a neta-level. In the simplest case, a well defined class of recurring events are defined.
Monitoring processes operate on a recorded history of the unexpected e,.ents that hale been encountered, and a
set of rules map sp: cific recurring events to the addition of specific constraints to the shop model.

. onclusion

In this paper we hac attempted to lay out the issues involved in providing an ability to intelligently react to
dynamic changes in the state of the shop floor. In doing so we have advocated a constraint-based approach and
have identified the t.pes of constraint kno%%ledge that appear relevant to providing an intelligent reactive
processing capability.
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